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In 1941, the British physicist Sir Geoffrey Taylor was told by authorities “that it might
be possible to produce a bomb in which a very large amount of energy would be released
by nuclear fission” (Taylor 1950a). Based on his knowledge of conventional explosions,
he published a report for the Ministry of Home Security attempting to determine what

effects might be expected if such a nuclear explosion occurred. After the war the re-

port was declassified and published (Taylor 1950a). Taylor
1
concluded that if a large

amount of energy E was suddenly released in an infinitely concentrated form (a sce-
nario not dissimilar to a nuclear explosion), then a spherical shock wave is propagated

outwards whose radius R is related to the time t since the explosion by:

R = S(γ) t2/5 E1/5 ρ–1/5
0

(1)

where ρ0 is the ambient atmospheric density and the proportionality constant S(γ)
is a function of γ, the ratio of the specific heats of air (often called the adiabatic index).

Recall that γ = 1.4 for diatomic gases (like air) under standard conditions. A schematic

of the situation at some time t is depicted in Figure 1.
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Figure 1: Cartoon of the Trinity explosion a short time after detonation. The fireball is
expanding into the ambient air which has a density of ρ0.

1
Similar work was done independently around the same time by John von Neumann in the US and

Leonid Sedov in the USSR.



It is obvious that R should depend positively on E and t (more energy = bigger bang),
but it should also negatively depend on the ambient air density ρ0 – an explosion push-

ing against denser air at sea level will not expand as quickly as one in less dense air at

altitude or in a vacuum.

Although often (erroneously) described in the popular science literature as having

performed a dimensional analysis to derive Equation 1, Taylor’s approach was more

rigorous and involved simultaneously solving the equation of motion, continuity equa-

tion and equation of state for an expanding spherical blast wave from a point source.

Nonetheless, by assuming that the radius R depends only on E, t and ρ0, we can ar-

rive at the same general form as Taylor’s equation using dimensional analysis. First,

assume that R is proportional to E, t and ρ0 to some mystery powers, i.e.

R ∝ Ea ρb
0
tc (2)

where a, b and c are the exponents to be determined. We know that the dimensions
of the four quantities are:

[R] = L [E] = ML2T–2 [ρ0] = ML–3 [t] = T

and so by considering the dimensions of mass, length and time in turn, we require

both sides of Equation 2 to have the same exponent:

M : 0 = a + b
L : 1 = 2a – 3b
T : 0 = –2a + c

This set of equations can be easily solved by setting a = –b from the first equation,
using the second equation to find b = –1/5 and a = 1/5, and finally c = 2/5 from the
third equation. Hence we have:

R = S × E1/5 ρ–1/5
0

t2/5 (3)

for some (dimensionless) proportionality constant S, following Taylor’s notation. Note
that there is no reason why S needs to be one value for all radii and times. Given the
extreme conditions inside the fireball it is quite conceivable that S could change de-
pending on which processes dominate at a particular time.

One way to test the validity of this equation is to measure the radius of the fireball

and plot it as a function of time. It is always easier to deal with straight lines when



plotting, so we linearise Equation 3 by taking the (base-10) logarithm of both sides:

log R = 2
5
log t + 1

5
log

E
ρ0
+ log S.

Therefore, if we plot log R versus log t we expect the gradient to be exactly 2
5
with a

y-axis intercept c of:

c = 1
5
log

E
ρ0
+ log S = 1

5
log

E S5
ρ0
. (4)

This is essentially the analysis Taylor performed in his second paper (Taylor 1950b)

using declassified high-speed photos of the expanding Trinity fireball (Mack 1947). One
such series of photos is shown in Figure 2. The length and time scales provided on the
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FIGURE Succession of photographs of the 'ball of fire' from t= 0.10 msec. to 1.93 msac.6. 

(Facinqp .  182) 
Figure 2: The expanding Trinity fireball captured in a series of photographs 0.1 ms
to 1.93 ms after detonation. Note the length scale in the bottom-left corner. The

explosion consumed the 30 m tower supporting the bomb in ∼0.6 ms.



frames allowed Taylor to accurately measure the radius of the fireball at each instant

and produce a graph very similar to that shown in Figure 3
2
.
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Figure 3: Plot of the Trinity fireball radius as a function of time, using measurements
from Taylor (1950b). The solid line shows the R ∝ t2/5 relationship predicted by Taylor’s
analysis and our dimensional arguments. The y-intercept of the graph is related to the
energy E and the air density ρ0. The first data point was not included in the fit.

The solid line in Figure 3 was fitted with a fixed gradient of
2

5
and a log R intercept

of c = 2.766. The agreement between the predicted 2
5
slope and the measurements is

remarkable given the complex physics taking place inside the fireball during this time.

Only the first data point (0.10 ms after detonation when the radius was 11 m) lies

significantly off the linear trend, presumably due to the initial interaction of the rapidly

expanding blast wave with the bomb casing and tower (also see Figure 2).

The excellent agreement between theory and measurement also implies that the

explosion can be characterised by a single value of S(γ) over a wide range of times.
As Taylor notes in his second paper, “this is surprising, because in those calculations it
was assumed that air behaves as though γ, the ratio of the specific heats, is constant at all
temperatures, an assumption which is certainly not true”.

2
Taylor actually plotted

5

2
log R versus log t to produce a graph with an expected gradient of 1.0, or an

angle of 45
◦
from either axis.



By rearranging Equation 4, we can easily calculate the energy of the explosion from

the y-intercept c, air density ρ0 and proportionality constant S:

E = 10(5×c)ρ0S5 (5)

A pure dimensional analysis cannot provide a value for S(γ) as it is dimensionless.
The explosion energy E depends on S to the fifth power, so Taylor spent consider-
able effort determining its theoretical value. For dry air at standard temperatures,

γ = 1.4 and he found S(1.4) = 1.032. Using this value and assuming an air density of
1.25 kg m

–3
, Taylor estimated the Trinity test to have an explosion energy of E = 71.4 TJ,

or equivalent to 16,800 tons (16.8 kt) of TNT
3
. Using an air density of 1.06 kg m

–3
–

more appropriate for the 1500 m altitude of the test site – we calculate a yield of:

E = 10(5×2.766)m5 s–2 1.06 kg m
–3

1.0325
= 61.5 TJ

or 14.7 kt TNT equivalent. The official yield as determined by the US Department of
Energy is 21 kt (DOE 2015), which includes the mechanical energy of the blast cal-

culated here, as well as contributions from the light output and ionizing radiation.

A re-analysis of Zirconium fission products published in 2016 estimated the yield at

22.1± 2.7 kt (Hanson et al. 2016). Despite containing very simplified physics, our yield
agrees with these estimates within ∼30%.

Beware that in this example we were lucky that the proportionality constant S was
so close to 1. This was not expected and will not be the case in all dimensional anal-

yses, e.g. for a pendulum T ∝
√ Lg , with a proportionality constant of 2π. Had we

assumed S = 1 exactly then the energy from Equation 5 would be 17.2 kt TNT, or
20.3 kt using the higher ρ0 value – coincidently closer to the official yield.

Update 02/2021: Díaz (2021) applied Taylor’s analysis to the August 2020 explosion
of∼2750 tons of ammoniumnitrate in a warehouse in Beirut, Lebanon. After analysing
several amateur videos from different perspectives to generate (R, t) measurements,
they showed that the data follow the same R ∝ t2/5 relationship found by Taylor and
estimated a yield of 0.6 ± 0.3 kt TNT equivalent. This is in good agreement with in-
dependent estimates from seismometers, infrasound data and the size of the crater.

Their plot of fireball radius with time is reproduced in Figure 4 on the next page.

3
Taylor used the English long ton (=1.0160metric tons) so his value would be expressed today as 17.1

(metric) kt of TNT, where 1 kt TNT is defined to be exactly 4184 GJ.
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FIG. 4. Logarithmic plot showing the data from the four
selected videos following the predictions of (5). The solid line
corresponds to the median value of the distributions of fit
parameters found in Sec. V E and the dashed lines show the
lines of 0.1, 0.2, 0.5, 1, and 2 kt of TNT equivalent produced
by a hemispherical explosion for reference. The labels indicate
the recording locations in Figure 3.

Chain Monte Carlo (MCMC) [23, 24]. The resulting pro-
jections of the posterior probability distributions of the
model parameters are shown in Figure 5 [25].

The projections of the posterior probability distribu-
tions of the slope m and intercept n show an excellent
agreement with the unitary slope predicted by Taylor’s
model within the uncertainty of the data. The slope is
found to have the value m = 1.0+0.0

�0.1, whereas the inter-

cept is given by n = 6.3+0.1
�0.1. The uncertainties are based

on the 16th and 84th percentiles of the samples in the
marginalized distribution for each parameter.

The final step of this analysis is to use (7) to determine
the energy from the intercept n found above. Nonethe-
less, there is a significant observation to consider: Taylor
described an explosion in free air, which is perfectly valid
for the Trinity test, in which the first nuclear bomb was
detonated at the top of a 30-meter steel tower allowing
the early stages of the explosion expand spherically. The
Beirut explosion, on the contrary, occurred at ground
level; therefore, it is better described as the explosion of a
hemispherical charge. In practice, the yield of a spherical
charge needed to produce a blast of a given size is larger
than the equivalent yield from a hemispherical charge. If
the ground were a perfect reflector of the blast wave, then
the hemispherical explosion would appear enhanced by a
factor two with respect to a spherical explosion in free
air; nevertheless, around 10% of the energy is dissipated
as ground shock and cratering so that the enhancement
factor is closer to 1.8 [26]. This means that the yield
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FIG. 5. One and two dimensional projections of the poste-
rior probability distributions of the model parameters. The
lines indicate the median value of the distribution for each
parameter.

calculated in (7) must be corrected by a factor 1/1.8 to
account for the hemispherical nature of the Beirut explo-
sion.[? ] Using (7), we find the estimate for the energy of
the Beirut explosion to be E = 2.3+1.1

�1.1 TJ, corresponding

to a yield of 0.6+0.3
�0.3 kt of TNT equivalent.

F. Applicability to a chemical explosion

At the beginning of Sec. V the reader was warned
about the direct application of a method developed for
nuclear explosions to a chemical explosion. Significant
di↵erences between these two type of explosions can lead
to di↵erent phenomena, in particular to how the blast
wave develops, a key assumption of the present study.
The point-source solution developed by Taylor, Seldov,
and von Neumann relies on clear assumptions that are
not necessarily satisfied by a chemical explosion. Taylor
explored the limitations of his formulation when applied
to high explosives and using experimental data found
that when the reduced blast size Z = R/E1/3 lies in
range (2.2� 3.8)⇥ 10�3 cm/erg1/3 then the point-source
solution is still applicable [1]. Converting the length to
meters and the energy to terajoules this range becomes
47.3� 81.7 m/(TJ)1/3. Using the median explosive yield
determined in the previous section we find that the Beirut
explosion lies within the range of applicability for dis-
tances between 62–108 meters. Table I shows a signif-
icant fraction of the data reaching beyond this range;
nonetheless, even the data points outside the region of

Figure 4: Plot from Díaz (2021) showing the progression of the Beirut fireball with time.

Measurements were extracted from amateur videos at different vantage points to the

explosion. The lines show kt TNT energies produced by a hemispherical blast wave. The
data are consistent with an explosion energy of 0.6± 0.3 kt TNT.

References

Department of Energy (DOE), 2015, "United States Nuclear Tests July 1945 through September
1992", DOE/NV–209-REV 16 (Sept 2015), NNSA, United States Department of Energy.

Díaz, J. S., 2021, "Explosion analysis from images: Trinity and Beirut", European Journal of Physics,
42, 035803.

Hanson, S. K. et al., 2016, "Measurements of extinct fission products in nuclear bomb debris: Deter-
mination of the yield of the Trinity nuclear test 70 y later", Proceedings of the National Academy
of Sciences, 113(29), 8104.

Mack, J. E., 1947, "Semi-popular motion picture record of the Trinity explosion". PlIDDC221. U.S.
Atomic Energy Commission.

Taylor, G., 1950a, "The Formation of a Blast Wave by a Very Intense Explosion. I. Theoretical Dis-
cussion", Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences, Vol. 201, No. 1065, 159.

Taylor, G., 1950b, "The Formation of a Blast Wave by a Very Intense Explosion. II. The Atomic Explo-
sion of 1945", Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences, Vol. 201, No. 1065, 175.


